[docs]classMeanAbsoluteError(Metric):r"""Calculates `the mean absolute error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_. .. math:: \text{MAE} = \frac{1}{N} \sum_{i=1}^N \lvert y_{i} - x_{i} \rvert where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. """
[docs]@sync_all_reduce("_sum_of_absolute_errors","_num_examples")defcompute(self)->Union[float,torch.Tensor]:ifself._num_examples==0:raiseNotComputableError("MeanAbsoluteError must have at least one example before it can be computed.")returnself._sum_of_absolute_errors.item()/self._num_examples