Ignite Your Networks! ===================== :mod:`ignite` is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. .. raw:: html <a target="_blank" rel="noopener noreferrer" href="https://colab.research.google.com/github/pytorch/ignite/blob/master/assets/tldr/teaser.ipynb"> <img src="https://raw.githubusercontent.com/pytorch/ignite/master/assets/tldr/pytorch-ignite-teaser.gif" width=655 height=801 alt="pytorch-ignite-teaser" style="width: auto !important; height: auto !important; max-width: 80% !important;" > </a> *Click on the image to see complete code* Features -------- - `Less code than pure PyTorch <https://raw.githubusercontent.com/pytorch/ignite/master/assets/ignite_vs_bare_pytorch.png>`_ while ensuring maximum control and simplicity - Library approach and no program's control inversion - *Use ignite where and when you need* - Extensible API for metrics, experiment managers, and other components Installation ============ From `pip <https://pypi.org/project/pytorch-ignite/>`_: .. code:: bash pip install pytorch-ignite From `conda <https://anaconda.org/pytorch/ignite>`_: .. code:: bash conda install ignite -c pytorch From source: .. code:: bash pip install git+https://github.com/pytorch/ignite Nightly releases ---------------- From pip: .. code:: bash pip install --pre pytorch-ignite From conda (this suggests to install `pytorch nightly release <https://anaconda.org/pytorch-nightly/pytorch>`_ instead of stable version as dependency): .. code:: bash conda install ignite -c pytorch-nightly Docker Images ------------- Using pre-built images ^^^^^^^^^^^^^^^^^^^^^^ Pull a pre-built docker image from `our Docker Hub <https://hub.docker.com/u/pytorchignite>`_ and run it with docker v19.03+. .. code:: bash docker run --gpus all -it -v $PWD:/workspace/project --network=host --shm-size 16G pytorchignite/base:latest Available pre-built images are : - ``pytorchignite/base:latest | pytorchignite/hvd-base:latest | pytorchignite/msdp-apex-base:latest`` - ``pytorchignite/apex:latest | pytorchignite/hvd-apex:latest`` - ``pytorchignite/vision:latest | pytorchignite/hvd-vision:latest | pytorchignite/msdp-apex-vision:latest`` - ``pytorchignite/apex-vision:latest | pytorchignite/hvd-apex-vision:latest`` - ``pytorchignite/nlp:latest | pytorchignite/hvd-nlp:latest | pytorchignite/msdp-apex-nlp:latest`` - ``pytorchignite/apex-nlp:latest | pytorchignite/hvd-apex-nlp:latest`` For more details, `check out on GitHub <https://github.com/pytorch/ignite/tree/master/docker>`_. Documentation ============= To get started, please, read :doc:`quickstart` and :doc:`concepts`. .. toctree:: :maxdepth: 2 :caption: Notes quickstart concepts examples faq Library structure ================= - :mod:`ignite`: Core of the library, contains an engine for training and evaluating, most of the classic machine learning metrics and a variety of handlers to ease the pain of training and validation of neural networks. - :mod:`ignite.contrib`: The contrib directory contains additional modules that can require extra dependencies. Modules vary from TBPTT engine, various optimisation parameter schedulers, experiment tracking system handlers and a metrics module containing many regression metrics. .. automodule:: ignite .. toctree:: :maxdepth: 2 :caption: Package Reference engine handlers metrics distributed exceptions utils .. automodule:: ignite.contrib .. toctree:: :maxdepth: 2 :caption: Contrib Package Reference contrib/engines contrib/metrics contrib/handlers .. toctree:: :maxdepth: 1 :caption: Team About us <https://pytorch.org/ignite/master/about.html> governance